Урок 5. Битовые операции

Для освоения темы этого урока вам потребуются знания о системах счисления (двоичной, восьмеричной и др.), навыки перевода чисел из одной системы счисления в другую, а также вы должны иметь представление о том, что такое битовые (они же поразрядные) операции. С последним можно познакомиться по вот этой лекции.

В языке программирования C существуют следующие поразрядные операции: & (И), | (ИЛИ), ^ (исключающее ИЛИ), << (сдвиг влево), >> (сдвиг вправо), ~ (поразрядное дополнение до единицы). Рассмотрим на примерах, как они работают, но перед этим уделим внимание выводу в языке C чисел в отличных от десятичной системах счисления.

В С можно присваивать целочисленные значения в десятичной, восьмеричной и шестнадцатеричной системах счисления. Для того, чтобы присвоить переменной число в восьмеричной системе счисления, перед ним надо написать 0 (ноль), в шестнадцатеричной — 0x (ноль и икс), например:

  int a, b;
  a = 077; // записано восьмеричное число
  b = 0x1F; // присвоено шестнадцатеричное число

Любые целые числа можно выводить на экран в десятичном, восьмеричном и шестнадцатеричном представлении. Пример кода для вывода определенных ранее двух переменных в различных системаъ счисления:

  printf("%d %o %x %X\n", a,a,a,a);
  printf("%d %o %x %X\n", b,b,b,b);

В результате на экране вы увидите:

63 77 3f 3F 
31 37 1f 1F

Восьмеричные и шестнадцатеричные числа используются из-за удобства при работе с двоичной системой счисления. Каждая цифра восьмеричного числа может быть заменена тремя цифрами двоичного. И каждая цифра шестнадцатеричного числа легко заменяет четыре разряда двоичного числа. Вот таблица соответствия цифр восьмеричной системы счисления числам двоичной системы:

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Теперь допустим, что у нас есть восьмеричное число 037. По таблице легко понять, что в двоичном выражении оно будет выглядеть как 011 111.

Задание

  1. Как будут выглядеть восьмеричные числа 04271 и 03566 в двоичном представлении.
  2. Составьте на бумаге таблицу соответствия шестнадцатеричный цифр двоичным числам. Переведите числа 7D, FFFF, 2C9 в двоичную систему счисления.

Итак, если бы мы при работе с поразрядными операциями использовали десятичные числа, то чтобы оценить результат нам бы каждый раз приходилось переводить десятичное число в двоичную систему счисления, что относительно трудоемко. Если же человек видит, например, восьмеричное число, то он может представить как оно выглядит в двоичном представлении, помня или держа перед глазами таблицу соответствия чисел. Например, как только мы видим 017, то можем представить в уме, как последние четыре бита ячейки памяти забиты единицами.

Теперь вернемся к поразрядным операциям и протестируем каждую из них. Для этого напишем небольшую программу:

  int a, b;
  a = 017;
  b = 036;
  printf("0%o & 0%o = 0%o\n", a, b, a & b);
  printf("0%o | 0%o = 0%o\n", a, b, a | b);
  printf("0%o ^ 0%o = 0%o\n", a, b, a ^ b);
  printf("0%o << 2 = 0%o\n", a, a << 2);
  printf("0%o >> 2 = 0%o\n", a, a >> 2);
  printf("~0%o = 0%o\n", a, ~a);

Результат ее работы будет выглядеть так:

017 & 036 = 016 
017 | 036 = 037 
017 ^ 036 = 021 
017 << 2 = 074 
017 >> 2 = 03 
~017 = 037777777760

Этот результат будет проще понять с помощью рисунка:

bits.png

В последнем случае получилось такое большое число потому, что под форматы вывода целых чисел (%d, %o, %X) выделяется по 4 байта.

Задание

  • Используя шестнадцатеричные числа, напишите аналогичную приведенной выше программу. Объясните результат.
  • Попробуйте составлять сложные битовые операции (в несколько действий) и оценивать их результат.

Теперь рассмотрим пример использования битовых операций. Допустим, у нас есть массив, требуется снять с него "маску", которая бы отражала, в какой позиции стоят отрицательные, а в какой положительные элементы. Пусть единица в бите обозначает соответствующий ей положительный элемент массива, а ноль — отрицательный. Другими словами, если у нас есть массив {4, -3, 2, 2, 8, -1}, то его "битовая маска" будет выглядеть как 101110, или в восьмеричном представлении как 056. Составим алгоритм решения этой задачи:

  1. Будем считать, что массив состоит не более чем из 32 элементов. Поэтому для хранения его "маски" достаточно переменной типа int. Назовем ее mask и присвоим значение 0.
  2. Перебрать элементы массива в цикле for. Если встречается положительный элемент, то установить соответствующий ему бит значения mask в 1.
  3. Вывести значение переменной mask на экран в виде восьмеричного числа.

Вроде бы все просто, но как установить в единицу определенный бит числа? Существует закономерность соответствия степеней двойки и двоичного представления числа:
20 = 0000 0001
21 = 0000 0010
22 = 0000 0100
23 = 0000 1000
24 = 0001 0000
и т.д. Если для вас эта последовательность не очевидна, то пересчитайте. Теперь если применить к mask побитовую операцию | (ИЛИ), а в качестве второго операнда использовать определенную степень двойки, то один бит будет установлен в 1. Например:
(0) 0000 0000 | (25) 0010 0000 = 0010 0000
(32) 0010 0000 | (27) 1000 0000 = 1010 0000

При переборе первый элемент массива имеет индекс 0, но соответствующий ему бит в maskдолжен стоять впереди остальных. Если известно общее количество элементов массива (N), то можно определить степень двойки по формуле N - i - 1. Действительно, имея третий положительный элемент массива из 10 элементов, следует установить в единицу восьмой с конца бит, а это значит надо использовать вторым операндом битового ИЛИ 27, а 7 как раз будет 10(N) - 2(i) - 1.

Другая проблема — как в языке C возвести число в степень. Понятно, что можно написать свой код, но скорее всего в стандартной библиотеке уже есть подобная функция. С помощью заголовочного файла math.h можно подключить библиотеку с математическими функциями. Среди них есть функция pow(), которая принимает два числа и возвращает результат возведения первого числа в степень, выраженную вторым числом. Однако результат возвращается в виде вещественного числа, а нам требуется целое. Как быть? В языке программирования С есть операции приведения типов, которые меняют тип значения с одного на другой. Например, чтобы преобразовать значение вещественной переменной a в целое, следует написать (int) a.
Вот как может выглядеть вышеописанная программа:

#include <stdio.h>
#include <math.h>
 
#define N 12
 
main () {  
 
  int nums[N] = {7, 3, 9, -5, -3, 2, 1, 0, 16, -4, 2, 0};
  int mask = 0, i;
 
  for (i=0; i < N; i++)
    if (nums[i] >= 0)
      mask = mask | (int)pow(2,N-i-1); 
 
  printf("%o\n", mask);
}

Задание
Напишите предыдущую программу. Оцените как она работает1. Подумайте над тем, как вывести на экран двоичное представление восьмеричного числа. Попробуйте реализовать это.
1 Если у вас не получается скомпилировать программу, добавьте в конце вызова gcc опцию -lm (например, gcc -o bits bits.c -lm).

Создано